3.2.73 \(\int \frac {1}{(a+b x^2) \sqrt {4+d x^4}} \, dx\) [173]

3.2.73.1 Optimal result
3.2.73.2 Mathematica [C] (verified)
3.2.73.3 Rubi [A] (verified)
3.2.73.4 Maple [C] (verified)
3.2.73.5 Fricas [F]
3.2.73.6 Sympy [F]
3.2.73.7 Maxima [F]
3.2.73.8 Giac [F]
3.2.73.9 Mupad [F(-1)]

3.2.73.1 Optimal result

Integrand size = 21, antiderivative size = 300 \[ \int \frac {1}{\left (a+b x^2\right ) \sqrt {4+d x^4}} \, dx=\frac {\sqrt {b} \arctan \left (\frac {\sqrt {4 b^2+a^2 d} x}{\sqrt {a} \sqrt {b} \sqrt {4+d x^4}}\right )}{2 \sqrt {a} \sqrt {4 b^2+a^2 d}}-\frac {\sqrt [4]{d} \left (2+\sqrt {d} x^2\right ) \sqrt {\frac {4+d x^4}{\left (2+\sqrt {d} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt {2}}\right ),\frac {1}{2}\right )}{2 \sqrt {2} \left (2 b-a \sqrt {d}\right ) \sqrt {4+d x^4}}+\frac {\left (2 b+a \sqrt {d}\right ) \left (2+\sqrt {d} x^2\right ) \sqrt {\frac {4+d x^4}{\left (2+\sqrt {d} x^2\right )^2}} \operatorname {EllipticPi}\left (-\frac {\left (2 b-a \sqrt {d}\right )^2}{8 a b \sqrt {d}},2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt {2}}\right ),\frac {1}{2}\right )}{4 \sqrt {2} a \left (2 b-a \sqrt {d}\right ) \sqrt [4]{d} \sqrt {4+d x^4}} \]

output
1/2*arctan(x*(a^2*d+4*b^2)^(1/2)/a^(1/2)/b^(1/2)/(d*x^4+4)^(1/2))*b^(1/2)/ 
a^(1/2)/(a^2*d+4*b^2)^(1/2)-1/4*d^(1/4)*(cos(2*arctan(1/2*d^(1/4)*x*2^(1/2 
)))^2)^(1/2)/cos(2*arctan(1/2*d^(1/4)*x*2^(1/2)))*EllipticF(sin(2*arctan(1 
/2*d^(1/4)*x*2^(1/2))),1/2*2^(1/2))*(2+x^2*d^(1/2))*((d*x^4+4)/(2+x^2*d^(1 
/2))^2)^(1/2)*2^(1/2)/(2*b-a*d^(1/2))/(d*x^4+4)^(1/2)+1/8*(cos(2*arctan(1/ 
2*d^(1/4)*x*2^(1/2)))^2)^(1/2)/cos(2*arctan(1/2*d^(1/4)*x*2^(1/2)))*Ellipt 
icPi(sin(2*arctan(1/2*d^(1/4)*x*2^(1/2))),-1/8*(2*b-a*d^(1/2))^2/a/b/d^(1/ 
2),1/2*2^(1/2))*(2*b+a*d^(1/2))*(2+x^2*d^(1/2))*((d*x^4+4)/(2+x^2*d^(1/2)) 
^2)^(1/2)/a/d^(1/4)*2^(1/2)/(2*b-a*d^(1/2))/(d*x^4+4)^(1/2)
 
3.2.73.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 10.12 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.22 \[ \int \frac {1}{\left (a+b x^2\right ) \sqrt {4+d x^4}} \, dx=-\frac {i \operatorname {EllipticPi}\left (-\frac {2 i b}{a \sqrt {d}},i \text {arcsinh}\left (\frac {\sqrt {i \sqrt {d}} x}{\sqrt {2}}\right ),-1\right )}{\sqrt {2} a \sqrt {i \sqrt {d}}} \]

input
Integrate[1/((a + b*x^2)*Sqrt[4 + d*x^4]),x]
 
output
((-I)*EllipticPi[((-2*I)*b)/(a*Sqrt[d]), I*ArcSinh[(Sqrt[I*Sqrt[d]]*x)/Sqr 
t[2]], -1])/(Sqrt[2]*a*Sqrt[I*Sqrt[d]])
 
3.2.73.3 Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 318, normalized size of antiderivative = 1.06, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {1541, 27, 761, 2221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {d x^4+4} \left (a+b x^2\right )} \, dx\)

\(\Big \downarrow \) 1541

\(\displaystyle \frac {2 b \int \frac {\sqrt {d} x^2+2}{2 \left (b x^2+a\right ) \sqrt {d x^4+4}}dx}{2 b-a \sqrt {d}}-\frac {\sqrt {d} \int \frac {1}{\sqrt {d x^4+4}}dx}{2 b-a \sqrt {d}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {b \int \frac {\sqrt {d} x^2+2}{\left (b x^2+a\right ) \sqrt {d x^4+4}}dx}{2 b-a \sqrt {d}}-\frac {\sqrt {d} \int \frac {1}{\sqrt {d x^4+4}}dx}{2 b-a \sqrt {d}}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {b \int \frac {\sqrt {d} x^2+2}{\left (b x^2+a\right ) \sqrt {d x^4+4}}dx}{2 b-a \sqrt {d}}-\frac {\sqrt [4]{d} \left (\sqrt {d} x^2+2\right ) \sqrt {\frac {d x^4+4}{\left (\sqrt {d} x^2+2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt {2}}\right ),\frac {1}{2}\right )}{2 \sqrt {2} \sqrt {d x^4+4} \left (2 b-a \sqrt {d}\right )}\)

\(\Big \downarrow \) 2221

\(\displaystyle \frac {b \left (\frac {\left (2 b-a \sqrt {d}\right ) \arctan \left (\frac {x \sqrt {a^2 d+4 b^2}}{\sqrt {a} \sqrt {b} \sqrt {d x^4+4}}\right )}{2 \sqrt {a} \sqrt {b} \sqrt {a^2 d+4 b^2}}+\frac {\left (\sqrt {d} x^2+2\right ) \sqrt {\frac {d x^4+4}{\left (\sqrt {d} x^2+2\right )^2}} \left (a \sqrt {d}+2 b\right ) \operatorname {EllipticPi}\left (-\frac {\left (2 b-a \sqrt {d}\right )^2}{8 a b \sqrt {d}},2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt {2}}\right ),\frac {1}{2}\right )}{4 \sqrt {2} a b \sqrt [4]{d} \sqrt {d x^4+4}}\right )}{2 b-a \sqrt {d}}-\frac {\sqrt [4]{d} \left (\sqrt {d} x^2+2\right ) \sqrt {\frac {d x^4+4}{\left (\sqrt {d} x^2+2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt {2}}\right ),\frac {1}{2}\right )}{2 \sqrt {2} \sqrt {d x^4+4} \left (2 b-a \sqrt {d}\right )}\)

input
Int[1/((a + b*x^2)*Sqrt[4 + d*x^4]),x]
 
output
-1/2*(d^(1/4)*(2 + Sqrt[d]*x^2)*Sqrt[(4 + d*x^4)/(2 + Sqrt[d]*x^2)^2]*Elli 
pticF[2*ArcTan[(d^(1/4)*x)/Sqrt[2]], 1/2])/(Sqrt[2]*(2*b - a*Sqrt[d])*Sqrt 
[4 + d*x^4]) + (b*(((2*b - a*Sqrt[d])*ArcTan[(Sqrt[4*b^2 + a^2*d]*x)/(Sqrt 
[a]*Sqrt[b]*Sqrt[4 + d*x^4])])/(2*Sqrt[a]*Sqrt[b]*Sqrt[4*b^2 + a^2*d]) + ( 
(2*b + a*Sqrt[d])*(2 + Sqrt[d]*x^2)*Sqrt[(4 + d*x^4)/(2 + Sqrt[d]*x^2)^2]* 
EllipticPi[-1/8*(2*b - a*Sqrt[d])^2/(a*b*Sqrt[d]), 2*ArcTan[(d^(1/4)*x)/Sq 
rt[2]], 1/2])/(4*Sqrt[2]*a*b*d^(1/4)*Sqrt[4 + d*x^4])))/(2*b - a*Sqrt[d])
 

3.2.73.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 1541
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[ 
{q = Rt[c/a, 2]}, Simp[(c*d + a*e*q)/(c*d^2 - a*e^2)   Int[1/Sqrt[a + c*x^4 
], x], x] - Simp[(a*e*(e + d*q))/(c*d^2 - a*e^2)   Int[(1 + q*x^2)/((d + e* 
x^2)*Sqrt[a + c*x^4]), x], x]] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e 
^2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a]
 

rule 2221
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]) 
, x_Symbol] :> With[{q = Rt[B/A, 2]}, Simp[(-(B*d - A*e))*(ArcTan[Rt[c*(d/e 
) + a*(e/d), 2]*(x/Sqrt[a + c*x^4])]/(2*d*e*Rt[c*(d/e) + a*(e/d), 2])), x] 
+ Simp[(B*d + A*e)*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(4* 
d*e*q*Sqrt[a + c*x^4]))*EllipticPi[-(e - d*q^2)^2/(4*d*e*q^2), 2*ArcTan[q*x 
], 1/2], x]] /; FreeQ[{a, c, d, e, A, B}, x] && NeQ[c*d^2 - a*e^2, 0] && Po 
sQ[c/a] && EqQ[c*A^2 - a*B^2, 0] && PosQ[B/A] && PosQ[c*(d/e) + a*(e/d)]
 
3.2.73.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 1.05 (sec) , antiderivative size = 86, normalized size of antiderivative = 0.29

method result size
default \(\frac {\sqrt {2}\, \sqrt {1-\frac {i \sqrt {d}\, x^{2}}{2}}\, \sqrt {1+\frac {i \sqrt {d}\, x^{2}}{2}}\, \Pi \left (\frac {\sqrt {2}\, \sqrt {i \sqrt {d}}\, x}{2}, \frac {2 i b}{\sqrt {d}\, a}, \frac {\sqrt {-\frac {i \sqrt {d}}{2}}\, \sqrt {2}}{\sqrt {i \sqrt {d}}}\right )}{a \sqrt {i \sqrt {d}}\, \sqrt {d \,x^{4}+4}}\) \(86\)
elliptic \(\frac {\sqrt {2}\, \sqrt {1-\frac {i \sqrt {d}\, x^{2}}{2}}\, \sqrt {1+\frac {i \sqrt {d}\, x^{2}}{2}}\, \Pi \left (\frac {\sqrt {2}\, \sqrt {i \sqrt {d}}\, x}{2}, \frac {2 i b}{\sqrt {d}\, a}, \frac {\sqrt {-\frac {i \sqrt {d}}{2}}\, \sqrt {2}}{\sqrt {i \sqrt {d}}}\right )}{a \sqrt {i \sqrt {d}}\, \sqrt {d \,x^{4}+4}}\) \(86\)

input
int(1/(b*x^2+a)/(d*x^4+4)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/a/(1/2*I*d^(1/2))^(1/2)*(1-1/2*I*d^(1/2)*x^2)^(1/2)*(1+1/2*I*d^(1/2)*x^2 
)^(1/2)/(d*x^4+4)^(1/2)*EllipticPi((1/2*I*d^(1/2))^(1/2)*x,2*I/d^(1/2)*b/a 
,(-1/2*I*d^(1/2))^(1/2)/(1/2*I*d^(1/2))^(1/2))
 
3.2.73.5 Fricas [F]

\[ \int \frac {1}{\left (a+b x^2\right ) \sqrt {4+d x^4}} \, dx=\int { \frac {1}{\sqrt {d x^{4} + 4} {\left (b x^{2} + a\right )}} \,d x } \]

input
integrate(1/(b*x^2+a)/(d*x^4+4)^(1/2),x, algorithm="fricas")
 
output
integral(sqrt(d*x^4 + 4)/(b*d*x^6 + a*d*x^4 + 4*b*x^2 + 4*a), x)
 
3.2.73.6 Sympy [F]

\[ \int \frac {1}{\left (a+b x^2\right ) \sqrt {4+d x^4}} \, dx=\int \frac {1}{\left (a + b x^{2}\right ) \sqrt {d x^{4} + 4}}\, dx \]

input
integrate(1/(b*x**2+a)/(d*x**4+4)**(1/2),x)
 
output
Integral(1/((a + b*x**2)*sqrt(d*x**4 + 4)), x)
 
3.2.73.7 Maxima [F]

\[ \int \frac {1}{\left (a+b x^2\right ) \sqrt {4+d x^4}} \, dx=\int { \frac {1}{\sqrt {d x^{4} + 4} {\left (b x^{2} + a\right )}} \,d x } \]

input
integrate(1/(b*x^2+a)/(d*x^4+4)^(1/2),x, algorithm="maxima")
 
output
integrate(1/(sqrt(d*x^4 + 4)*(b*x^2 + a)), x)
 
3.2.73.8 Giac [F]

\[ \int \frac {1}{\left (a+b x^2\right ) \sqrt {4+d x^4}} \, dx=\int { \frac {1}{\sqrt {d x^{4} + 4} {\left (b x^{2} + a\right )}} \,d x } \]

input
integrate(1/(b*x^2+a)/(d*x^4+4)^(1/2),x, algorithm="giac")
 
output
integrate(1/(sqrt(d*x^4 + 4)*(b*x^2 + a)), x)
 
3.2.73.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (a+b x^2\right ) \sqrt {4+d x^4}} \, dx=\int \frac {1}{\left (b\,x^2+a\right )\,\sqrt {d\,x^4+4}} \,d x \]

input
int(1/((a + b*x^2)*(d*x^4 + 4)^(1/2)),x)
 
output
int(1/((a + b*x^2)*(d*x^4 + 4)^(1/2)), x)